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model
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Abstract. An extension of the supersymmetii¢ model for correlated electrons is given and
integrability is established by demonstrating that the model can be constructed through the quantum
inverse scattering method using @& matrix without the difference property. Some general
symmetry properties of the model are discussed and from the Bethe ansatz solution an expression
for the energies is presented.

The supersymmetric (SUSYJ model was first introduced in [1] as an example of a system

of correlated electrons which is integrable in one dimension as a consequence of the quantum
inverse scattering method (QISM) (e.g. see [2]). Such models, which can be solved exactly
by the Bethe ansatz method, are important in that the exact solutions offer non-perturbative
results concerning physical behaviour. For the SUSYhodel, Bethe ansatz solutions have

been studied [3—-9] and several analyses into the physical characteristics that the model describes
have been undertaken [4,5, 7, 10].

The construction of the SUSY model is based onR-matrix satisfying the Yang—Baxter
equation associated with the one-parameter family of minimal typical representations of the
Lie superalgebrg/(2|1). In terms of the standard notation for electron creation, annihilation
and occupation operators the local (two-site) Hamiltonian for the model reads

hissn ==Y (chcirse +C)L+U)Y2rrtmionn) 1 U (el el ciagpcingy +hc)
o

+U (njgniy + nivghieny) — 240y + 0 + 01y +04ey

whereU is an arbitrary free parameter. The local Hamiltonian is also invariant with respect
to the Lie superalgebrgl (2|1) (hence the name). Below, an extension of this model will be
derived in such a way that integrability is maintained. The local Hamiltonian of the new model
reads

hijiv1 = — Z((l —it)e] ity + h.C)(L+ U) Y200 it a)
o
+U((1— it)CiTlC;L¢Ci+1¢Ci+1¢ +h.c)+ U(n,‘Tl’lw + I’l,—+1Tl’l,'+1¢)
—2+nijy t iy TRy Ry )

where now is an additional free variable which when chosen to be real (alongbmvitral and
U > —1) results in a Hermitian Hamiltonian. For the case 0 the usual SUSY model
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is recovered. The extended model bears some similarity with the multiparametric BUSY
model constructed in [11] but is in fact inherently different.

The construction of the above model is through the use of a solution of the Yang—Baxter
equation without difference property in the spectral parameter. It is known that the Hubbard
model may be derived via the QISM using Bmmatrix which is also without the difference
property [12,13]. However, for the Hubbard model the Lax operator is given as a particular
coupling of two auxilliary Lax operators of six-vertex type. The construction employed here
appears more akin to the generalized chiral Potts models given in [14] based on representations
of quantum algebras at roots of unity. For these models and the one discussed here the spectral
parameters without difference property originate from rgygresentatiorof the underlying
algebraic structure.

In order to demonstate integrability of this model, we begin with the rational limit of
the U, (¢1(2|1)) invariant (i.e.gl(2|1) invariant) solution of the Yang—Baxter equation with
additional spectral parameters constructed in [15, 16]. This solution may be written in the form

u—a—p u+toa+pf+2
Ribo) = g e a2 @
and satisfies the Yang—Baxter equation

Rio(u — v, B, y)Ri3(u, B, ) Ro3(v, v, @) = Raz(v, v, @) Riz(u, B, @) Rio(u — v, B, y).

Note that this solution of the Yang—Baxter equation has multiple spectral parameters, one of
which has the difference property while the other two do not. Itis worth remarking at this point
that the above solution is just one of a plethora of solutions of this type which arise naturally
as a consequence of the representation theory of the type-l quantum superalgebras [16, 17].

In the above expression for tliematrix the operator®; aregl(2|1) invariant projection
operators. To explain their actions we begin by recalling gi82|1) has generator&’,
i, j =1, 2, 3 satisfying the super commutator relations

[Elﬂ’ Elk] — nglt _ (_1)([i]+[j])([k]+[l])51iEf.

Above, [1] = [2] = 0,[3] = 1. Choosing a four-dimensional space with bdg§is>: i =

1, 2, 3, 4}, a representation, of g/(2|1) acting on this space exists with the action of the
generators given by

E;=12@3  Ef=I3)2l  Ei=—-13)@ - 144  E5=—12(2 - |44

E3 = J/a|1)(2| + Va + 1|3) (4] E3 = Ja|2)(1] + Vo + 1|4) (3]
E3=—Va)@+Va+12)(4  E} = —Val3)(1+Va+1|4)(2

E3 = o |1)(1] + (o + 1)([2)(2] +13)(3]) + (o + 2 |4) (4].

Above, the statefl), |4) are bosonic an¢R), |3) are fermionic. The highest weight state is
|1) with weight(0, Oj«). It is significant here that is a free complex parameter. Considering
the tensor product representation® m,, for generic values at andg, thenP; projects onto
the irreducible submodule with (unnormalized) basis vectors

h =10®[)  |¥) =B 1) +Vall) ®2)

w3) = VBI3) ® (1) + Vall) ® [3) €)
W3 = VBB + D4 ® 1) +Veala+DI1) @ 4) +/ap(12) ® [3) — 13) ® 2))

while P; projects onto the irreducible space spanned by

[W2) = Va(a+1)|4) @ 1) +/B(B +DIL) @ |4)
+/(@+D(B+D(—2) ®3) +3) @ |2)
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[¥2) = /B +112) ® |4) + Vo + 1|4) ® |2))
|W2) = /B+13) ® |4) +Va + 1|4 ®13) |W2) = |4) ® |4).

The projectorP; is obtained fromP, = I — P; — P3. From this solution of the Yang—Baxter
equation we may now construct the transfer matrix

t(u, B, o) = StrgRor (u, B, @) ... Roo(u, B, @) Ror(u, B, o)
which forms a commuting family in two variables; namely,
[t(u,B, ), t(v,y, )] =0

and thusr(u, B, @) can be diagonalized independently of bathand 8. In fact, the
diagonalization of this transfer matrix has already been treated in [8] with the result that
the eigenvalues are given by

A fre = (%)L A, B, ) @
with
| e M e e = B e
L n
(Y e e
e I P

such that the parametexs, v; are solutions of the Bethe ansatz equations

L
()\k+a) :m)‘k_—vf_l k=1 ....n

A — - )\k —v;+ 1
A —vi+1 i —y;+2
i =1,...,m.
Ukk—v,—l 1:[ i — v =2 : "
The R-matrix possesses the proper®(0, o, «) = —P where P is the Z,-graded

permutation operator. From here on in we make the parametrization
B =itu+a

and fixr anda. Writing the R-matrix now as a function of only we have that
R(u=0=-

and thus by the standard approach of the QISM [2] we can construct a closed periodic quantum
model where the Hamiltonian is the logarithmic derivative of the transfer matrix and expressible
as

L-1
H = Zhi(i+l) +hi1
i=1
with the two-site Hamitonian given by

d
—_P. —R
h du (@)

u=0
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In terms of the projections operators (cf (2)) we have

-1 1 dpr,
h=—P + — 2it P—
a t a+1 dp

B=a
which when expressed in terms of Fermi operators leads to (1)iWitha—* and an overall
normalization factor of-2(« + 1) included for convenience. The energies of the Bethe states
are obtained from the transfer matrix eigenvalues
dA 2L +1 + |tk

(“ ) 4 aa+ 1) Z “

U 1y=0

E=-2a+1) A 1=—

In conclusion we discuss some remarkable propertles this model possesses. By
construction, the transfer matrix from which it is derivedgi2|1) invariant. In fact, one
may show that the eigenstates obtained by the algebraic Bethe ansatz method are highest
weight states in complete analogy with othg(2|1) invariant models studied in [18-20].
However, the local Hamiltonians amdt g/ (2|1) invariant. Only for the global system is the
supersymmetry present. Regardless, it is still possible to add arbitrary chemical potential and
magentic field terms to the local Hamiltonian (1) which do not violate the integrability.
Construction of the model fol. = 2 yields the usual supersymmetii¢ model, as
does the construction on an open chain using (an appropriate modification of) Sklyanin’s
approach [21] where the boundatymatrices are chosen to be trivial. These unusual scenarios
are a consequence of the property

dp|  dp
d,B B=a d/B B=a

which is precisely the symmetry breaking term for the local Hamiltonians, and the presence
of which also implies that

hi+1) 7 ha+pi-
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