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Abstract. An extension of the supersymmetricU model for correlated electrons is given and
integrability is established by demonstrating that the model can be constructed through the quantum
inverse scattering method using anR-matrix without the difference property. Some general
symmetry properties of the model are discussed and from the Bethe ansatz solution an expression
for the energies is presented.

The supersymmetric (SUSY)U model was first introduced in [1] as an example of a system
of correlated electrons which is integrable in one dimension as a consequence of the quantum
inverse scattering method (QISM) (e.g. see [2]). Such models, which can be solved exactly
by the Bethe ansatz method, are important in that the exact solutions offer non-perturbative
results concerning physical behaviour. For the SUSYU model, Bethe ansatz solutions have
been studied [3–9] and several analyses into the physical characteristics that the model describes
have been undertaken [4,5,7,10].

The construction of the SUSYU model is based on aR-matrix satisfying the Yang–Baxter
equation associated with the one-parameter family of minimal typical representations of the
Lie superalgebragl(2|1). In terms of the standard notation for electron creation, annihilation
and occupation operators the local (two-site) Hamiltonian for the model reads

hi,i+1 = −
∑
σ

(c
†
iσ ci+1σ + h.c.)(1 +U)1/2(ni,−σ+ni+1,−σ ) +U(c†

i↓c
†
i↑ci+1↑ci+1↓ + h.c.)

+U(ni↑ni↓ + ni+1↑ni+1↓)− 2 +ni↑ + ni↓ + ni+1↑ + ni+1↓

whereU is an arbitrary free parameter. The local Hamiltonian is also invariant with respect
to the Lie superalgebragl(2|1) (hence the name). Below, an extension of this model will be
derived in such a way that integrability is maintained. The local Hamiltonian of the new model
reads

hi,i+1 = −
∑
σ

((1− it)c†
iσ ci+1σ + h.c.)(1 +U)1/2(ni,−σ+ni+1,−σ )

+U((1− it)c†
i↓c

†
i↑ci+1↑ci+1↓ + h.c.) +U(ni↑ni↓ + ni+1↑ni+1↓)

−2 +ni↑ + ni↓ + ni+1↑ + ni+1↓ (1)

where nowt is an additional free variable which when chosen to be real (along withU real and
U > −1) results in a Hermitian Hamiltonian. For the caset = 0 the usual SUSYU model

0305-4470/99/270315+05$30.00 © 1999 IOP Publishing Ltd L315



L316 Letter to the Editor

is recovered. The extended model bears some similarity with the multiparametric SUSYU

model constructed in [11] but is in fact inherently different.
The construction of the above model is through the use of a solution of the Yang–Baxter

equation without difference property in the spectral parameter. It is known that the Hubbard
model may be derived via the QISM using anR-matrix which is also without the difference
property [12, 13]. However, for the Hubbard model the Lax operator is given as a particular
coupling of two auxilliary Lax operators of six-vertex type. The construction employed here
appears more akin to the generalized chiral Potts models given in [14] based on representations
of quantum algebras at roots of unity. For these models and the one discussed here the spectral
parameters without difference property originate from therepresentationof the underlying
algebraic structure.

In order to demonstate integrability of this model, we begin with the rational limit of
theUq(gl(2|1)) invariant (i.e.gl(2|1) invariant) solution of the Yang–Baxter equation with
additional spectral parameters constructed in [15,16]. This solution may be written in the form

R(u, β, α) = u− α − β
u + α + β

P1 + P2 +
u + α + β + 2

u− α − β − 2
P3 (2)

and satisfies the Yang–Baxter equation

R12(u− v, β, γ )R13(u, β, α)R23(v, γ, α) = R23(v, γ, α)R13(u, β, α)R12(u− v, β, γ ).
Note that this solution of the Yang–Baxter equation has multiple spectral parameters, one of
which has the difference property while the other two do not. It is worth remarking at this point
that the above solution is just one of a plethora of solutions of this type which arise naturally
as a consequence of the representation theory of the type-I quantum superalgebras [16,17].

In the above expression for theR-matrix the operatorsPi aregl(2|1) invariant projection
operators. To explain their actions we begin by recalling thatgl(2|1) has generatorsEij ,
i, j = 1, 2, 3 satisfying the super commutator relations

[Eij , E
k
l ] = δkjEil − (−1)([i]+[j ])([k]+[ l])δil E

k
j .

Above, [1] = [2] = 0, [3] = 1. Choosing a four-dimensional space with basis{|i >: i =
1, 2, 3, 4}, a representationπα of gl(2|1) acting on this space exists with the action of the
generators given by

E1
2 = |2〉〈3| E2

1 = |3〉〈2| E1
1 = −|3〉〈3| − |4〉〈4| E2

2 = −|2〉〈2| − |4〉〈4|
E2

3 =
√
α|1〉〈2| +

√
α + 1|3〉〈4| E3

2 =
√
α|2〉〈1| +

√
α + 1|4〉〈3|

E1
3 = −

√
α|1〉〈3| +

√
α + 1|2〉〈4| E3

1 = −
√
α|3〉〈1| +

√
α + 1|4〉〈2|

E3
3 = α |1〉〈1| + (α + 1)(|2〉〈2| + |3〉〈3|) + (α + 2) |4〉〈4|.

Above, the states|1〉, |4〉 are bosonic and|2〉, |3〉 are fermionic. The highest weight state is
|1〉 with weight(0, 0|α). It is significant here thatα is a free complex parameter. Considering
the tensor product representationπβ ⊗πα for generic values ofα andβ, thenP1 projects onto
the irreducible submodule with (unnormalized) basis vectors

|91
1〉 = |1〉 ⊗ |1〉 |91

2〉 =
√
β|2〉 ⊗ |1〉 +√α|1〉 ⊗ |2〉

|91
3〉 =

√
β|3〉 ⊗ |1〉 +√α|1〉 ⊗ |3〉

|91
4〉 =

√
β(β + 1)|4〉 ⊗ |1〉 +

√
α(α + 1)|1〉 ⊗ |4〉) +

√
αβ(|2〉 ⊗ |3〉 − |3〉 ⊗ |2〉)

(3)

while P3 projects onto the irreducible space spanned by

|92
1〉 =

√
α(α + 1)|4〉 ⊗ |1〉 +

√
β(β + 1)|1〉 ⊗ |4〉)

+
√
(α + 1)(β + 1)(−|2〉 ⊗ |3〉 + |3〉 ⊗ |2〉)
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|92
2〉 =

√
β + 1|2〉 ⊗ |4〉 +

√
α + 1|4〉 ⊗ |2〉)

|92
3〉 =

√
β + 1|3〉 ⊗ |4〉 +

√
α + 1|4〉 ⊗ |3〉) |92

4〉 = |4〉 ⊗ |4〉.
The projectorP2 is obtained fromP2 = I − P1 − P3. From this solution of the Yang–Baxter
equation we may now construct the transfer matrix

t (u, β, α) = str0R0L(u, β, α) . . . R02(u, β, α)R01(u, β, α)

which forms a commuting family in two variables; namely,

[t (u, β, α), t (v, γ, α)] = 0

and thust (u, β, α) can be diagonalized independently of bothu and β. In fact, the
diagonalization of this transfer matrix has already been treated in [8] with the result that
the eigenvalues are given by

3(u, β, α) =
(
u− α − β
u + α + β

)L
3(u, β, α) (4)

with

3(u, β, α) =
n∏
i=1

u− λi + β

u− λi − β +

(
u + α − β
u− α − β .

u + α − β − 2

u− α − β − 2

)L n∏
i=1

u− λi + β

u− λi − β − 2

−
(
u + α − β
u− α − β

)L { n∏
i=1

u− λi + β

u− λi − β
m∏
j=1

u− νj − β + 1

u− νj − β − 1

+
n∏
i=1

u− λi + β

u− λi − β − 2

m∏
j=1

u− νj − β − 3

u− νj − β − 1

}
(5)

such that the parametersλi, νj are solutions of the Bethe ansatz equations(
λk + α

λk − α
)L
=

m∏
j=1

λk − νj − 1

λk − νj + 1
k = 1, . . . , n

n∏
k=1

λk − νi + 1

λk − νi − 1
= −

m∏
j=1

νj − νi + 2

νj − νi − 2
i = 1, . . . , m.

The R-matrix possesses the propertyR(0, α, α) = −P whereP is the Z2-graded
permutation operator. From here on in we make the parametrization

β = itu + α

and fixt andα. Writing theR-matrix now as a function of onlyu we have that

R(u = 0) = −P
and thus by the standard approach of the QISM [2] we can construct a closed periodic quantum
model where the Hamiltonian is the logarithmic derivative of the transfer matrix and expressible
as

H =
L−1∑
i=1

hi(i+1) + hL1

with the two-site Hamitonian given by

h = −P · d

du
R(u)

∣∣∣∣
u=0

.
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In terms of the projections operators (cf (2)) we have

h = −1

α
P1 +

1

α + 1
P3− 2it P

dP2

dβ

∣∣∣∣
β=α

which when expressed in terms of Fermi operators leads to (1) withU = α−1 and an overall
normalization factor of−2(α + 1) included for convenience. The energies of the Bethe states
are obtained from the transfer matrix eigenvalues

E = −2(α + 1) 3−1 d3

du

∣∣∣∣
u=0

= 2L(α + 1)

α
+ 4(α + 1)

n∑
i=1

α + itλi
λ2
i − α2

.

In conclusion we discuss some remarkable properties this model possesses. By
construction, the transfer matrix from which it is derived isgl(2|1) invariant. In fact, one
may show that the eigenstates obtained by the algebraic Bethe ansatz method are highest
weight states in complete analogy with othergl(2|1) invariant models studied in [18–20].
However, the local Hamiltonians arenot gl(2|1) invariant. Only for the global system is the
supersymmetry present. Regardless, it is still possible to add arbitrary chemical potential and
magentic field terms to the local Hamiltonian (1) which do not violate the integrability.

Construction of the model forL = 2 yields the usual supersymmetricU model, as
does the construction on an open chain using (an appropriate modification of) Sklyanin’s
approach [21] where the boundaryK-matrices are chosen to be trivial. These unusual scenarios
are a consequence of the property

P
dP2

dβ

∣∣∣∣
β=α
= − dP2

dβ

∣∣∣∣
β=α

P

which is precisely the symmetry breaking term for the local Hamiltonians, and the presence
of which also implies that

hi(i+1) 6= h(i+1)i .
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